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1 Introduction

In the very first exercise sheet we constructed some basic limits and colimits in the homotopy
category, namely products and coproducts. Nevertheless, we went on to comment that we
cannot expect the homotopy category to have more complicated limits and colimits.

Thus we begin this week’s exercise sheet by demonstrating that the pointed homotopy
category does not have pushouts. This motivates the construction of so-called homotopy
pushouts, whose study shall be taken up in the remainder of the exercise sheet. These
objects are constructed not in the homotopy category, but rather in Top∗ itself. It is unfair
to think of them merely as ‘replacements’ for pushouts in hTop∗, since they actually do a lot
more. The story is analogous to that of the mapping cone construction, which although gives
a homotopy-invariant way to form quotient spaces, ends up leading to interesting behaviour
such as infinite cofiber sequences.

We work in the pointed category throughout. Please complete all exercises. There are
five in total.

2 The Homotopy Category Does Not Have Pushouts

We work in hTop∗ although the story is the same without basepoints. To see that pushouts
do not exist we construct an absurdity. Let us assume that the square in the following
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diagram is a pushout in hTop∗
S1

[2]

�� y

// ∗

��

��

S1

α ..

// Q

��?
?

?
?

Z.

(2.1)

Here[2] is the homotopy class of the degree 2 map 2 : S1 → S1. If the pushout space Q
exists, then the universal property it must satisfy for a given space Z reads as follows

[Q,Z] ∼= {α ∈ π1Z | 2 · α = 0} ∼= Hom(Z2, π1Z). (2.2)

Now consider the fibration sequence

S1 → SO3 → S2. (2.3)

Applying [Q,−] gives to this fibration sequence gives rise to the exact sequence

[Q,S1]→ [Q,SO3]→ [Q,S2] (2.4)

By (2.2) we have [Q,S1] ∼= Hom(Z2,Z) = 0 and [Q,S2] = 0, while [Q,SO3] ∼= [Q,RP 3] ∼=
Hom(Z2,Z2). This means that the sequence (2.4) is

0→ Z2 → 0 (2.5)

and this is clearly not exact. Hence we rule out the existence any space Q which would
satisfy the universal property of the pushout.

On the other hand, while we may not be able to form pushouts, we can form form weak
pushouts. As soon as we drop the requirement that the induced homotopy class be unique
we get some insight on how to proceed.

Definition 1 Let C be a category. A commutative diagram

W

f
��

g // Y

k
��

X
h // P

(2.6)

of morphisms is C is said to be a weak pushout if whenever given morphisms X
α−→ Q

β←− Y
with αf = βg there exists a morphism γ : P → Q satisfying i) γh = α and ii) γk = β. The
square (2.6) is said to be a pushout if it is a weak pushout and if for each pair of morphisms

X
α−→ Q

β←− Y with αf = βg, the induced morphism γ : P → Q is unique. �

We have already seen examples of weak pushouts. Recall that if A ↪→ X is a cofibration,
then

A

��

// A ∧ I+

��
X // X ∧ I+

(2.7)
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is a weak pushout in Top∗.
As another example, let us return to (2.1). We claim that if Q = RP 2, then this square

does have the weak pushout property in the homotopy category. In fact we have already
seen how to turn a null composite 2 · α = α ◦ 2 ' into a map RP 2 → Z out of the mapping
cone of 2 : S1 → S1. Namely we choose representatives for each homotopy class and make
a particualr choice of null homotopy F : 2 · α ' ∗. From these choices we get the extension
αF indicated in the right-hand diagram below

S1

2
��

F⇒

// ∗

��
S1

α
// Z

S1

2
�� y

// D2

�� F

��

S1

α //

// RP 2

αF

""E
E

E
E

E

Z.

(2.8)

We stress that neither of these two diagrams belongs to hTop∗. The right-hand diagram
belongs to Top∗, and the left-hand diagram lives somewhere between these two categories.
However, when we project the right-hand diagram into hTop∗, we see that we are able to
solve the pushout problem (2.1) in a weak sense.

Exercise 2.1 Show that if
X

f−→ Y
g−→ Z (2.9)

is a homotopy cofiber sequence, then

X

[f ]

��

// ∗

��
Y

[g] // Z

(2.10)

is a weak pushout in the homotopy category. �

Is is possible to that the weak pushout of an arbitrary span X ← W → Y exists in hTop∗?
The answer is yes, but as these things go we will have more control over the situation by
setting up our machinery inside Top∗. Our solution will be to construct homotopy pushouts.
We stress that these are not pushouts in any categorical sense, and although we have used
the idea of weak pushouts to motivate our work, the outcome will be something much more
powerful.

3 Homotopy Pushouts

As promised we work in the category of pointed spaces. There are versions of all the con-
structions and statements of this section also in the unpointed category, and to be able to
transition between the two categories we can often get away with assuming that all spaces
are well-pointed.
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Definition 2 Let maps

X
f←− W

g−→ Y (3.1)

be given. The double mapping cylinder of f, g is the quotient space

M(f, g) =
X ∨ (W ∧ I+) ∨ Y

f(w) ∼ (w, 0) (w, 1) ∼ g(w)
. (3.2)

We denote the obvious inclusion maps by

iX : X →M(f, g), iY : Y →M(f, g). (3.3)

There is a canonical homotopy ψ = ψf,g : iXf ' iY g given by

ψt(w) = (w, t), w ∈ W, t ∈ I. (3.4)

This homotopy fits in the following square

W

f

��
ψ⇒

g // Y

iY
��

X
iX //M(f, g)

(3.5)

which we call the standard homotopy pushout of f, g. �

Example 3.1 The standard homotopy pushout of X
f←− W → ∗ is the mapping cone Cf . In

particular the standard homotopy pushout of ∗ ← W → ∗ is the suspension ΣW . �

Suppose given a square with homotopy

W

f

��
F⇒

g // Y

k
��

X
h // Z.

(3.6)

Then we get a comparison map
θF : M(f, g)→ Z (3.7)

by setting

θF (x) = h(x)

θF (w, t) = F (x, t) (3.8)

θF (y) = k(y).

The map θF allows us to measure the deviation of the square (3.6) (with homotopy!) from
being the standard homotopy pushout.
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Definition 3 A homotopy commutative square

W

f

��

g // Y

k
��

X
h // Z.

(3.9)

is said to be a homotopy pushout if there exists a homotopy F : hf ' kg for which the
induced map

θF : M(f, g)→ Z (3.10)

is a homotopy equivalence. �

We stress that for (3.9) to be a homotopy pushout it is not sufficient only that Z is homotopy
equivalent to the double mapping cylinder M(f, g). It is important that the homotopy
equivalence be induced in a particular way.

Exercise 3.1 Show that the homotopy commutative diagram

X

f
��

// ∗

��
X

g // Z

(3.11)

is a homotopy pushout if and only if

X
f−→ Y

g−→ Z (3.12)

is a homotopy cofiber sequence. �

Proposition 3.1 Assume that the solid part of the following diagram commutes up to ho-
motopy

W

f
��

g // Y

l
�� v

��

X

u //

k // Z

  @
@

@
@

V

(3.13)

and that the square is a homotopy pushout. Then there is a map m : Z → K such that
mk ' u and ml ' v.

Proof We have already produced the required map when the square is the standard homo-
topy pushout of f, g, and the general case follows easily.

Corollary 3.2 The image of a homotopy pushout square in the homotopy category is a weak
pushout.
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We stress that there is much more information in the homotopy pushout square than in its
image in the homotopy category. This is exactly the information of the homotopies, the
presence of which allows for a level of control over the granted maps.

Next we will study when we should consider two different homotopy pushouts to be
equivalent. Assume given a diagram of maps and homotopies of the form

X

F⇒α

��

W

G⇒

foo g //

γ

��

Y

β
��

X ′ W ′
f ′
oo

g′
// Y ′.

(3.14)

We use this data to define a map

θ = θ(F,G) : M(f, g)→M(f ′, g′) (3.15)

between the homotopy pushouts of the rows by setting

θ(x) = α(x)

θ(w, t) =


F (w, 3t) 0 ≤ t ≤ 1

3

(γ(w), 3t− 1) 1
3
≤ t ≤ 2

3

G(w, 3t− 2) 2
3
≤ t ≤ 1

(3.16)

θ(y) = β(x).

Theorem 3.3 With the notation of the last paragraph, if each of the maps α, β, γ is a
homotopy equivalence, then so is the map θ : M(f, g)→M(f ′, g′).

We’ll take this for granted. A proof can be found on pg. 314 of Arkowitz’s book. For the
most part it isn’t difficult when the correct inverse has been constructed. The technical part
of the proof lies in finding the correct homotopies to induce the comparison maps.

The theorem shows that the double mapping cylinder can be constructed on the level of
the homotopy category. Taking α, β, γ to be identities we get the following.

Corollary 3.4 If f ' f ′ : W → X and g ' g′ : W → Y , then M(f, g) 'M(f ′, g′).

The theorem also shows that the homotopy pushout rectifies the failure of the categorical
pushout to preserve pointwise equivalences of diagrams. Consider

Dn

��

Sn−1oo // Dn

��
∗ Sn−1oo // ∗.

(3.17)

Each vertical arrow is a homotopy equivalence, but taking pushouts of the rows generates
the map Sn → ∗, which is not a homotopy equivalence. On the other hand, taking homotopy
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pushouts of the rows we induce a homotopy equivalence Sn
'−→ Sn (although it need not be

the identity).
There is a clear extension of Theorem 3.3 to the case of arbitrary homotopy pushouts.

We interpret this as saying that if the solid part of the following homotopy commutative
diagram is given, if both the top and bottom squares are homotopy pushouts, and if the
three vertical arrows are homotopy equivalences, then the dotted arrow can be filled in with
a homotopy equivalence so as to make the entire diagram homotopy commute

W

'

��

!!DDDDDDDD
// Y

'

��

!!CCCCCCCC

X //

'

��

Z

'

���
�
�
�
�
�
�

W ′

!!CCCCCCCC
// Y ′

!!CCCCCCCC

X ′ // Z ′.

(3.18)

Thus the homotopy pushout is essentially unique. In fact there is a sort of converse to this
observation.

Theorem 3.5 Assume given a homotopy commutative cube

W

'

��

!!DDDDDDDD
// Y

'

��

!!CCCCCCCC

X //

'

��

Z

'

��

W ′

!!CCCCCCCC
// Y ′

!!CCCCCCCC

X ′ // Z ′.

(3.19)

in which each vertical arrow is a homotopy equivalence. Then the top square is a homotopy
pushout if and only if the bottom square is a homotopy pushout.

The proof of this is more technical than difficult. The non-trivial point lies again in con-
structing suitable homotopies. Specifically, given homotopies F,K,L for the top, left and
back squares of the cube we must find a homotopy F ′ for its bottom square so that the
following diagram of comparison maps homotopy commutes

M(f, g)

θ(K,L) '
��

θF // D

δ'
��

M(f ′, g′)
θF ′ // D.

(3.20)

It is indeed possible to choose such an F ′, but its construction requires some work. In any
case, once the homotopy commutativity of (3.20) is established, the proof of 3.5 follows easily
from Theorem 3.3.
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The theorems in this section will be needed for the exercises in the next two sections.
We’ll take them for granted for the moment, but we reassure the reader that the results will
be covered in dual form in the lectures when I discuss homotopy pullbacks.

4 Recognising Homotopy Pushouts

Proposition 4.1 Let
A

f '
��

// C

k
��

B // D

(4.1)

commute up to homotopy. Assume that the map f is a homotopy equivalence. Then the
square is a homotopy pushout if and only of the map k : C → D is a homotopy equivalence.

Note that the converse statement fails in general.

Exercise 4.1 Prove Proposition 4.1. �

Proposition 4.2 Assume that the following strictly commutative square

W

y
f

��

g // Y

��
X // Z

(4.2)

is a pushout. If either f or g is a cofibration, then the square is a homotopy pushout.

You’ll be asked to prove Proposition 4.2 since it is quite important. The trick is to introduce
the mapping cylinders Mf , Mg and notice that the double mapping cylinder M(f, g) is
homeomorphic to the categorical pushout of any one of the following spans

Mf

jf←− W
jg−→Mg, Mf

jf←− W
g−→ Y, X

f←− W
jg−→Mg. (4.3)

In fact this is always true, regardless of any special properties that the maps f, g might have.

Exercise 4.2 It suffices to prove Proposition 4.2 under the assumption that f is a cofibra-
tion. Use the strictly commutative diagram

Mf

rf '
��

W
jfoo g // Y

X W
f

oo
g
// Y.

(4.4)

to induce a map θ : M(f, g) → D between the pushouts of the rows. Use what you know
about cofiber homotopy equivalences to show that θ is a homotopy equivalence and so prove
4.2. �
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The observations proceeding this exercise are important enough to deserve a statement
of their own.

Proposition 4.3 Any homotopy pushout square is pointwise equivalent to strictly commu-
tatitve square which is both a pushout and a homotopy pushout.

To explain what we have in mind let

A

f
��

g // C

��
B // D

(4.5)

be a given homotopy pushout. Then by converting the maps f, g into cofibrations be build
a homotopy commutative cube of the form

W

  AAAAAAAAA
//Mg

'

��

##HHHHHHHHH

Mf
//

'

��

M(f, g)

'

��

W

!!DDDDDDDD
// Y

$$JJJJJJJJJJ

X // Z.

(4.6)

The top face of the cube is both a pushout and a homotopy pushout, and moreover the left
and back faces of the cube commute strictly.

5 Comparing Cofibers

Proposition 5.1 Suppose that the homotopy commutative diagram

W

f

��

g // Y

k
��

X
h // Z

(5.1)

is a homotopy pushout. Then Cf ' Ck and Cg ' Ch.

Exercise 5.1 Time to prove 5.1! By symmetry it will suffice to prove that Cf ' Ck. Replace
(5.1) with the pointwise equivalent pushout diagram

W

y
jf

��

jg //Mg

k̂
��

Mf
//M(f, g)

(5.2)

9



and construct homotopy equivalences

Cjf
'−→ Cf , Ck̂

'−→ Ck. (5.3)

Use these to complete the proof. (Hint: Remember exercise 3.1?). �
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